Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31953342

RESUMO

The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.


Assuntos
Compostos Inorgânicos de Carbono/metabolismo , Chloroflexi/metabolismo , Fontes Termais/microbiologia , Microbiota , Synechococcus/metabolismo
2.
mBio ; 7(4)2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460798

RESUMO

UNLABELLED: Harnessing the metabolic potential of photosynthetic microbes for next-generation biotechnology objectives requires detailed scientific understanding of the physiological constraints and regulatory controls affecting carbon partitioning between biomass, metabolite storage pools, and bioproduct synthesis. We dissected the cellular mechanisms underlying the remarkable physiological robustness of the euryhaline unicellular cyanobacterium Synechococcus sp. strain PCC 7002 (Synechococcus 7002) and identify key mechanisms that allow cyanobacteria to achieve unprecedented photoautotrophic productivities (~2.5-h doubling time). Ultrafast growth of Synechococcus 7002 was supported by high rates of photosynthetic electron transfer and linked to significantly elevated transcription of precursor biosynthesis and protein translation machinery. Notably, no growth or photosynthesis inhibition signatures were observed under any of the tested experimental conditions. Finally, the ultrafast growth in Synechococcus 7002 was also linked to a 300% expansion of average cell volume. We hypothesize that this cellular adaptation is required at high irradiances to support higher cell division rates and reduce deleterious effects, corresponding to high light, through increased carbon and reductant sequestration. IMPORTANCE: Efficient coupling between photosynthesis and productivity is central to the development of biotechnology based on solar energy. Therefore, understanding the factors constraining maximum rates of carbon processing is necessary to identify regulatory mechanisms and devise strategies to overcome productivity constraints. Here, we interrogate the molecular mechanisms that operate at a systems level to allow cyanobacteria to achieve ultrafast growth. This was done by considering growth and photosynthetic kinetics with global transcription patterns. We have delineated putative biological principles that allow unicellular cyanobacteria to achieve ultrahigh growth rates through photophysiological acclimation and effective management of cellular resource under different growth regimes.


Assuntos
Adaptação Fisiológica , Processos Autotróficos , Fotossíntese , Synechococcus/fisiologia , Carbono/metabolismo , Luz , Oxirredução , Synechococcus/citologia , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo
3.
ISME J ; 8(11): 2243-55, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24781900

RESUMO

We used deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities, which was manifested through the transcriptional upregulation of transport and catabolic pathways. Although growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. These hypothesized interactions were inferred from the excretion of specific amino acids (for example, alanine and methionine) by the cyanobacterium, which correlated with the downregulation of the corresponding biosynthetic machinery in Shewanella W3-18-1. In addition, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation may indicate increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.


Assuntos
Processos Heterotróficos/genética , Interações Microbianas/genética , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Carbono/metabolismo , Técnicas de Cocultura , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Estresse Oxidativo , Shewanella putrefaciens/crescimento & desenvolvimento , Synechococcus/crescimento & desenvolvimento , Transcriptoma
4.
Genome Announc ; 2(1)2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24482507

RESUMO

The genome of the unicellular cyanobacterium Thermosynechococcus sp. strain NK55a, isolated from the Nakabusa hot spring, Nagano Prefecture, Japan, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to contain 2,358 protein-encoding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

5.
Genome Inform ; 18: 287-98, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18546496

RESUMO

To identify pathways of carbon utilization in the metal-reducing marine bacterium Shewanella oneidensis MR-1, we assayed the expression of cells grown with various carbon sources using a high-density oligonucleotide Affymetrix microarray. Our expression profiles reveal genes and regulatory mechanisms which govern the sensing, import, and utilization of the nucleoside inosine, the chitin monomer N-acetylglucosamine, and a casein-derived mixture of amino acids. Our analysis suggests a prominent role for the pentose-phosphate and Entner-Doudoroff pathways in energy metabolism, and regulatory coupling between carbon catabolism and electron acceptor pathways. In sum, these results indicate that S. oneidensis possesses a broader capacity for carbon utilization than previously reported, a view with implications for optimizing its role in microbial fuel cell and bioremediative applications.


Assuntos
Carbono/metabolismo , Perfilação da Expressão Gênica , Shewanella/metabolismo , Acetilglucosamina/metabolismo , Quitina/metabolismo , Inosina/metabolismo , Via de Pentose Fosfato , Shewanella/genética , Shewanella/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...